“Normal” Supply Chain Disruptions

Peter Ward
Ohio State University
Center for Excellence in Manufacturing Management
Some supply chain disruptions result from truly abnormal events...
Hurricane Katrina
But most supply chain disruptions are “normal.”

- They are the natural consequence of technological choices that have been made
Such “normal” supply chain disruptions are very costly

- A study of 827 disruptions announced by publicly traded firms from 1989-2000:
 - Average negative effect on stock price ~ 40%
 - Negative effects persist for several years
 - Cause doesn’t matter
 - Findings hold across industries

Source: Hendricks and Singhal, Production and Operations Management Journal, Spring, 2005
Normal disruptions are likely when the supply chain exhibits high levels of

- Interactive complexity
- Tight coupling

Complex vs. Linear Systems

<table>
<thead>
<tr>
<th>Complex Systems</th>
<th>Linear Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tight spacing of equip</td>
<td>Spread out equipment</td>
</tr>
<tr>
<td>Linked prod. steps</td>
<td>Segregated prod. steps</td>
</tr>
<tr>
<td>Personnel specialized</td>
<td>Little specialization</td>
</tr>
<tr>
<td>Feedback loops not familiar or intended</td>
<td>Few unintended feedback loops</td>
</tr>
<tr>
<td>Limited understanding of some processes</td>
<td>Extensive understanding of all processes</td>
</tr>
</tbody>
</table>
Tight vs. Loose Coupling

<table>
<thead>
<tr>
<th>Tight Coupling</th>
<th>Loose Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delays in processing not possible</td>
<td>Delays in processing possible</td>
</tr>
<tr>
<td>Invariant sequences</td>
<td>Order can be changed</td>
</tr>
<tr>
<td>Little slack available</td>
<td>Slack resources available</td>
</tr>
<tr>
<td>All buffers are deliberate, designed-in</td>
<td>Buffers, redundancies available freely</td>
</tr>
<tr>
<td>Substitutions limited and by design</td>
<td>Substitutions freely available</td>
</tr>
</tbody>
</table>
Interactions

Linear

Tight

Some continuous processing, e.g. drugs, bread

Assembly Line

Most Manufacturing

Complex

Nuclear Plant

Chemical Plants

Mining

R&D Firms

Coupling

Loose
Countermeasures for Disruption Risk

- Simplicity (Lean)
- Flexibility
- Redundancy
Examining the DNA of Lean

- All work is highly specified as to content, sequence, timing and outcome.
- Every customer-supplier connection must be direct, and there must be an unambiguous yes-or-no way to send requests and receive responses.
- The pathway for every product and service must be simple and direct.
- Any improvement must be made in accordance with the scientific method, under the guidance of a teacher, at the lowest possible level in the organization.
Lean and Simplicity

SYSTEM

PATHWAY:

CONNECTION

“Shipping” or other point of customer contact

External suppliers

ACTIVITY: Task being done by the person to whom it is assigned

External customers
Following work standards allows process problems to be flagged and corrected before problems are propagated.
Flexibility

- Helps to cope with uncertainty BUT you must specify the nature of the uncertainty!
- Consider two types of flexibility:
 - Range: switching between products and volumes (changing mix)
 - Mobility: new products, new features (volatile market)
Redundancy

Duplication: two units perform the same function.

Overlap: two units have an area of function in common.
Consider a range of choices
Disruption Countermeasure Summary

<table>
<thead>
<tr>
<th></th>
<th>Pluses</th>
<th>Minuses</th>
</tr>
</thead>
</table>
| Lean - Continuous Improvement | Gets at a root cause – complexity
Learning = Responsiveness | Big organizational commitment required |
| Flexibility | Fast response | Adds complexity
“With respect to what” caveat |
| Redundancy | Seamless response | Expensive
Adds complexity |
Concluding suggestions

- Simplify first
- A portfolio of countermeasures should be considered
- The market generally demands tighter coupling but not necessarily complexity
- Be as specific as possible about the nature of disruption risks before deciding on the countermeasure